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A B S T R A C T

We have found an approximate solution of Dirac equation using Foldy-Wouthuysen-Tani Hamiltonian of a Dirac
particle in the Kerr gravitational field. We have solved the equation approximately using time-independent per-
turbation theory for the positive energy states. We have found frequencies by which these states oscillate. Differ-
ence of the periods of any of these two states has an identical form of the classical gravitomagnetic clock effect
where the terms are quantized. So that, we have found a quantum version of the gravitomagnetic clock effect of
a Dirac fermion in the Kerr gravitational field.

1. Introduction

Gravitational effect on quantum particles is a very active research
area of theoretical physics (Obukhov et al., 2013; Adler and Chen,
2010). Clock effect in gravitational field is another active research area
(Tartaglia, 2000; Iorio, 2001). This clock effect was first discovered
by Cohen and Mashhoon (1993) in 1993 and known as the grav-
itomagnetic clock effect. Gravitomagnetic clock effect is the difference
of periods in prograde and retrograde orbital motion of a particle in
the equatorial plane of a central massive body like the Kerr black hole
(Cohen and Mashhoon, 1993). Let is the period for prograde
(retrograde) orbital motion around a central body, then for
this gravitomagnetic clock effect is given by (Mash-
hoon et al., 2001). Here, the Kerr parameter, . is the spin an-
gular momentum of the central body of mass and is the speed of
light. Spin of the orbiting test particle of mass lowers the gravitomag-
netic clock effect by an amount of (Faruque, 2004; Bini et al.,
2004).

The behaviors of spin zero particles in gravitational field are stud-
ied quantum mechanically in Adler and Chen (2010); Accioly and
Blas (2002), and dynamics of spin 1/2 particles are studied in Adler
et al. (2012). A quantum treatment of the classical gravitomagnetic
clock effect for spin 1/2 particles in Schwarzschild field was shown by
S.B. Faruque in Faruque (2018). We are going to treat spin 1/2 parti-
cles again, but this time in Kerr gravitational field as a more generalized
case. We shall treat the problem in a simplified picture. Let us assume
the spin of a Dirac fermion contributing relativistically in the non-rela

tivistic FWT (Foldy-Wouthuysen-Tani) Hamiltonian in Kerr gravitational
field. The positive and the negative energy states of a Dirac fermion are
uncoupled by the FWT transformation. It does not violate the covariance
of the Dirac theory (Obukhov, 2001).

2. FWT Hamiltonian of a Dirac fermion in Kerr gravitational field

The FWT Hamiltonian for a Dirac particle in the Kerr geometry in a
slowly rotating, weak-field limit is given in Konno and Kasai (1998);
Konno (1998). For non-relativistic limit and rotating central object
with uniform mass density, the Hamiltonian for the Dirac fermion in
Kerr gravitational field becomes:

where is the mass of the Dirac fermion under consideration, is the
linear momentum of the Dirac fermion, is the gravitational po-
tential due to gravity of the central body of mass is the angular
velocity of the particle, is the orbital angular momentum of the
particle, is the intrinsic spin of the particle with the Pauli spin
matrices is the angular velocity of the central body, is the radius
of the central body.

The Kerr parameter of the central rotating object,
where, is the angular momentum of the central body. Let, the direc-
tion of or the axis of rotation is in the direction of z-axis.
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Now, in Eq. (1) the term becomes:

(2)

The last term of the Eq. (1) becomes:

(3)

as we assume that, the Dirac fermion is in orbital motion in the equa-
torial plane of the central object. Here, is the unit vector along the
z-axis and is the z component of the intrinsic spin of the particle. In
our case, the central object is the Kerr black hole. From Eqs. (1)–(3),
we can write the Hamiltonian for the Dirac fermion as

(4)

Now, we can drop the first term of the right-hand side of the Eq.
(4) as it just adds a constant to the energy eigenvalue. This term has
no physical relevance to our analysis. We can neglect the fourth term

because in the non-relativistic limit is very very small.
We can also neglect the sixth term as the particle is slowly ro-
tating. We can also neglect the seventh term as it is very small
compared to the third term where the potential is very small. We
drop the eighth term as we analyze the situa-
tion with fairly constant gravity field. So, in a slowly rotating weak field
limit, the Hamiltonian of the Dirac particle in Kerr black hole becomes:

(5)

This Hamiltonian is exactly reduced to the Hamiltonian of the
Schwarzschild case (Faruque, 2018) if there is no rotation of the black
hole or . The two Kerr black hole terms of our Hamiltonian with
is almost similar to the two Kerr black hole terms of the Hamiltonian for
the Dirac particle in a slowly rotating weak field limit in Kerr black hole
derived by B R Iyer and Arvind Kumar in their paper “Dirac equation
in Kerr space-time” (Iyer and Kumar, 1977). The fourth term of Eq.
(6) is the exact match with Iyer and Kumar (1977) and the last term
is also similar without the coefficient. However, the coefficients have a
similar order of magnitude.

3. Quantum gravitomagnetic clock effect

The Hamiltonian in Eq. (6) is a time-independent Hamiltonian. The
solution of this Hamiltonian can be written as

(6)

We fix as four component spinor as follows:

(7)

where and are two component spinors. The equations sat-
isfied by these are

(8)

and

(9)

The positive and negative energy states are uncoupled by the FWT
transformation. and are simultaneous eigenstate of

because of the term . Here, .
So, we expect the solutions to contain spin-angular functions

(Sakurai and Napolitano, 2011). This is the combination of spin
functions and spherical harmonics. There is nothing to concern about
the radial functions entering in the states and . These two
radial functions going with either of these states satisfy the same radial
equation. So that, for each of these states, we can advance with only one
radial function and we need not solve both Eqs. (8) and (9). Solution
of any one equation is enough to get the same for the other equation.
Therefore, we write the solution to explicitly,

(10)

and observe that

(11)

where for and for where is
the total angular momentum quantum number and is the orbital angu-
lar momentum quantum number. Here, and

. Using Eqs. (10) and (11) in Eq. (8), we get

(12)

We now deal the problem using the time-independent perturbation
theory. Let, where,

(13)

and

(14)

The solution to the problem is given in Faruque
(2018). From there,

(15)

where, is the principal quantum number. The expectation
value of in the unperturbed states,

(16)

From literature (Powell and Crasemann, 1961),
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(17)

where, . This is analogous to the Bohr radius, but with the co-
efficients of the gravitational potential term. From Eqs. (14), (16), and
(17),

(18)

Using Eqs. (15) and (18) we can write,

(19)

Here, firstly we will consider only two allowed states of which are
the lower and upper limit of respectively. There are two

allowed states of which are and . That means, we
are choosing only two allowed energy states and
for simplicity. The other possibilities for different values will be dis-
cussed later.

So that, if (for which ), and then
we can write,

If (for which ), and then similarly we
can write,

(21)

Now, the frequency, and the corresponding period of oscil-
lation of the states . It is possible to calculate the corresponding
period of oscillations for the two states from Eqs. (20) and (21). To
calculate this, we are treating the second and third term of Eqs. (20)

and (21) as very small compared to the first term. Here,

(22)

By inserting in equation (22), we get,

(23)

Similarly,

(24)

So that,

(25)

Here we are declaring the terms and as quantiza-
tion factor. We can get the difference of periods of oscillation of any two
states and in similar way. That is:

(26)

We can see, for different values, only the quantization factor of the
first term in the right-hand side of Eq. (25) will change accordingly. All
the other terms will remain the same as Eq. (25).

4. Discussion

We have to interpret this result now. Here, firstly we consider two
states of a Dirac fermion with the same . In one state and

. In another state and . The difference of the pe-
riod of oscillation of these two states is given by Eq. (25). In the clas-
sical gravitomagnetic clock effect, the periods discussed are of the pro-
grade and retrograde orbital motion of a particle. In the case of the clas-
sical gravitomagnetic clock effect, the motion of the particle in prograde
orbit is slower than the motion in a retrograde orbit. But in this quan-
tum situation, no reference to orbit is reasonable, rather, we have differ-
ent states with different total angular momentum and different magnetic
quantum number. Formula (25) gives the oscillation-period difference
in previously mentioned two states. This can be considered as an observ-
able in the framework of quantum mechanics. Eq. (26) is the more gen-
eralized form of Eq. (25) with any values.
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The formula of classical gravitomagnetic clock effect given in
Faruque (2004) in the orbit of a spinning particle orbiting the Kerr
black hole is:

(27)

The structure of the Eq. (26) is the same and analogous with the Eq.
(27). The only difference is in the terms in the right-hand side which are
quantized in our Eq. (26). So, we can consider the formula (26) as a
quantum analogue of the classical gravitomagnetic clock effect. We are
declaring this quantum effect in the Eq. (26) as quantum gravitomag-
netic clock effect in the Kerr field upon a Dirac fermion.

5. Conclusion

In this study, we find a formula for a Dirac particle in the Kerr grav-
itational field which is a quantized version of the classical gravitomag-
netic clock effect. Further study is needed in the area of the quantum
nature of the gravitomagnetic clock effect. In this study, we consider
mainly the quantum effect. But in the classical gravitomagnetic effect,
we only consider the general relativistic effect. However, the results are
analogous. So, maybe Eqs. (26) and (27) have some connection which
can reveal some relations between quantum mechanics and general rel-
ativity.
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